Nonclassical 2,4-diamino-8-deazafolate analogues as inhibitors of dihydrofolate reductases from rat liver, Pneumocystis carinii, and Toxoplasma gondii

J Med Chem. 1996 Apr 26;39(9):1836-45. doi: 10.1021/jm950918e.

Abstract

The synthesis and biological activity of 42 6-substituted-2,4-diaminopyrido[3,2-d]pyrimidines (2,4-diamino-8-deazafolate analogues) are reported. The compounds were synthesized in improved yields compared to previous classical analogues using modifications of procedures reported previously by us. Specifically, the S-phenyl-; mono-, di-, and trimethoxyphenyl-; and mono-, di-, and trichlorophenyl-substituted analogues with H or CH3 at the N10 position and methyl and trifluoromethyl phenyl ketone analogues with H, CH3, and CH2C identical to CH at the N10 position were synthesized. The S10 and N10 alpha- and beta-naphthyl analogues along with the N10 CH3 analogues were also synthesized. These compounds were evaluated as inhibitors of dihydrofolate reductases (DHFR) from Pneumocystis carinii (pc) and Toxoplasma gondii (tg); selectivity ratios were determined against rat liver (rl) DHFR as the mammalian reference enzyme. Against pcDHFR the IC50 values ranged from 0.038 x 10-6 M for 2,4-diamino-6-[(N-methyl-2'-naphthylamino)methyl]pyrido[3,2-d]pyrimidine (28) to 5.5 x 10(-6) M for 2,4-diamino-6[(2',4'-dimethoxyanilino)methyl]pyrido[3,2-d]pyrim idi ne (15). N10 methylation in all instances increased potency. None of the analogues were selective for pcDHFR. Against tgDHFR the most potent analogue was 2,4-diamino-6-[(N-methylanilino)methyl]pyrido[3,2-d]pyrimidine (5) (IC50 0.0084 x 10(-6) M) and the least potent was 2,4-diamino-6[(2'-naphthylamino)methyl]-pyrido[3,2-d]pyrimidine (37) (IC50 0.16 x 10-6 M). N10 methylation afforded an increase in potency up to 10-fold. In contrast to pcDHFR, several of the 8-deaza analogues were significantly selective for tgDHFR, most notably 2,4-diamino-6-[(2'-chloro-N-methylanilino)-methyl]pyrido[3,2-d] pyrimidine (13), 2,4-diamino-6-[(3',4',5'-trimethoxyanilino)methyl]pyrido[3,2-d]pyr pyrimidine (29), and 2,4-diamino-6-[(2',4',6'-trichloroanilino)methyl]pyrido[3,2-d] pyrimidine (32) which combined high potency at 10-8 M along with selectivities of 8.0, 5.0, and 12.4, respectively. The potency of these three analogues are comparable to the clinically used agent trimetrexate while their selectivities for tgDHFR are 17-43-fold better than trimetrexate.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Folic Acid / analogs & derivatives*
  • Folic Acid / chemistry
  • Folic Acid / pharmacology*
  • Folic Acid Antagonists / pharmacology*
  • Liver / enzymology*
  • Magnetic Resonance Spectroscopy
  • Methylation
  • Pneumocystis / enzymology*
  • Rats
  • Spectrometry, Mass, Fast Atom Bombardment
  • Spectrophotometry, Ultraviolet
  • Tetrahydrofolate Dehydrogenase / drug effects*
  • Toxoplasma / enzymology*

Substances

  • Folic Acid Antagonists
  • Folic Acid
  • Tetrahydrofolate Dehydrogenase